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Abstract. We consider a one-dimensional directed polymer in a random potential which is
characterized by Gaussian statistics with finite radius local correlations. It is shown that the well
known Kardar’s solution obtained originally for a directed polymer withδ-correlated random
potential can be applied for the description of the present system only in the high-temperature
limit. For the low-temperature limit we have obtained a new solution which is described by the
one-step replica symmetry breaking. For the mean square deviation of the directed polymer of
linear sizeL it provides the usual scalingx2 ∼ aL2ζ with the wandering exponentζ = 2/3 and
the temperature-independent prefactor.

1. Introduction

In a wide variety of physical systems one is interested in the behaviour of a fluctuating linear
object (with finite line tension) interacting with a quenched random potential. The object
under consideration may be a dislocation in a crystal, a domain wall in a two-dimensional
magnet, a vortex line in a superconductor, a fluxon line in an extended Josephson junction
and so on, but following [1] this class of problems is traditionally discussed in terms of a
directed polymer in random media or simply as a ‘directed polymer’.

Quite naturally the best understanding has been achieved for the simplest one-
dimensional case when the displacements of a directed polymer can only occur in one
direction. In such case a directed polymer in the continuous approximation can be described
by the Hamiltonian

H [x(t), v] =
∫ L

0
dt

{
J

2

(
dx

dt

)2

+ v[x(t), t ]

}
(1.1)

whereJ is the linear tension,t is the longitudinal coordinate (06 t 6 L) andx(t) is the
transverse displacement of a polymer with respect to a straight line. The simplest (or rather
the most easily treatable) assumption on the distribution of the random potentialv(x, t)

consists in taking it to be Gaussian with

v(x, t) = 0 v(x, t)v(x ′, t ′) = 2V (x − x ′)δ(t − t ′). (1.2)

Here and throughout an overbar denotes the average over the realizations of the quenched
random potential.

Let us assume that att = 0 the position of a polymer is fixed;x(0) ≡ 0. Then, the
quantity of interest is the typical deviation of the polymer ‘trajectory’x(t) from the origin.
More precisely, one wants to know the dependence onL of the average square deviation
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of the polymer at the ending pointx = L, which in the limitL → ∞ is expected to be
described by the simple scaling

〈x2(L)〉 ∼ aL2ζ (1.3)

where angular brackets denote the average over thermal fluctuations, andζ is the so-called
wandering exponent.

In the absence of the random potential the situation is trivial and the wandering exponent
ζ is equal to 1/2. In this case the trajectory deviates from the origin only due to the thermal
fluctuations and the prefactora in the scaling law (1.3) is proportional to the temperature,
so at zero temperature〈x2(L)〉 = 0.

In the presence of a quenched random potential the situation becomes much more
complicated. Now besides the thermal fluctuations, the trajectory is pushed away from the
origin also due to the randomness in the background potential landscape, so that the scaling
law (1.3) may be governed by a new non-trivial wandering exponent. Moreover, since for a
generic random potential the ground-state trajectory of the Hamiltonian (1.1) typically drifts
away from the origin, the scaling law (1.3) can be expected to hold in the zero-temperature
limit as well.

It is widely believed that for a whole class oflocally correlated random potentials
(such that the functionV (x) in (1.2) is quickly decaying for|x| → ∞) the wandering
exponentζ is universal and equal to 2/3. This conclusion is based on the exact results
for finite temperature of [2, 3] and has also been confirmed by zero-temperature numerical
simulations of the discrete version of the directed polymer problem [1, 4] (see also [5]
for later references). However, both the calculation based on the reduction to the damped
Burgers’ equation with conservative random force [2] and the Bethe ansatz calculation
in terms of replica representation [3] are only valid for the case of strictlyδ-functional
correlations of the random potential.

On the other hand, Ḿezard and Parisi have introduced a rather general self-consistent
approach [6] which allows one to describe the fluctuations of aD-dimensional elastic
manifold embedded in(D + N)-dimensional random media. Application of this approach
to the one-dimensional directed polymer (D = 1, N = 1) with Gaussian behaviour of the
random potential correlation function [7] producesζ = 3/5, which contradicts the results
of [1–3]. The other contradiction is that the solution considered in [5, 6] is characterized
by broken replica symmetry, whereas the solution of [3] is replica symmetric. Therefore, a
question can be posed whether the breaking of replica symmetry in the framework of the self-
consistent approach is not an artefact imposed by the Gaussian form of a trial Hamiltonian.

In order to achieve a better understanding of the problem we present here our attempt
to generalize the solution suggested by Kardar [3] forδ-functional correlations of random
potential to a more physical situation when correlations of the random potential have finite
correlation radius (in transverse direction).

In section 2 we review some details of the approach developed in [3] and use it to find
the temperature dependence of the prefactor in equation (1.3) which turns out to be of the
form

a ∝ T −2/3. (1.4)

In section 3 the applicability of Kardar’s solution [3] for the approximate description
of the system with the finite radiusr of the random potential correlations is discussed. We
demonstrate that it can be used only in the high-temperature limitT � T0 ∝ r2/3, whereas
at low temperatures the solution has to have an essentially different structure which in
principle could lead to a change in the wandering exponent. The impossibility to apply
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the description with the help of Kardar’s solution at arbitrarily low temperatures follows
already from equation (1.4). One can expect that if in the low-temperature limit the typical
trajectory goes away from the origin its drift should be determined by the quenched random
potential and not by the effects of the thermal fluctuations. This means that in the system
with reasonable short-scaleregularization the divergence of the prefactor suggested by
equation (1.4) at low temperatures can be expected to saturate.

In section 4 the low-temperature solution of the regularized problem is found for the
particular choice of the random potential correlation functionV (x). The form of this solution
can be described in terms of the effective one-step replica symmetry breaking ansatz. In
this case one recovers the scaling law (1.3) with the same wandering exponentζ = 2/3 but
with a temperature-independentprefactor.

2. The solution of the unregularized problem

2.1. The relation between exponents

The idea of Kardar’s approach [3] is based on the indirect calculation of the wandering
exponentζ by analysing the scaling of the typical sample to samplefluctuationsof the free
energy. Suppose that the typical fluctuations of the free energy (produced by the random
potential) scale is

δF ∝ Lω (2.1)

where the exponentω is known. On the other hand, if the typical deviation of the trajectory
from the origin is equal tox, then the loss of energy due to the elastic term in the Hamiltonian
(1.1) must be of the order ofJx2/L. Balancing the two energies, one can write the following
estimate

〈x2〉 ∼ LδF

J
∝ Lω+1. (2.2)

Then, according to the definition of the wandering exponent (1.3), one finds the following
simple relation between the two exponents

2ζ = ω + 1 (2.3)

2.2. The replica method

The scaling of the free energy fluctuations with the size of the systemL can be relatively
easily investigated in terms of the replica method [8, 9]. To this end one has to calculate
the average

Z(n) ≡ Zn[v] (2.4)

of the nth power of the partition function

Z[v] =
∫

0<t<L
Dx(t) exp

{
−H [x(t), v]

T

}
(2.5)

obtained by integration over all the trajectories withx(0) = 0.
According to the definition of the free energy

F = −T lnZ[v] (2.6)

the replica partition functionZ(n) can be represented as follows

Z(n) = exp

[
− n

T
F

]
. (2.7)
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The average in equation (2.7) as elsewhere above is calculated over the realizations of
random potentialv(x, t). On the other hand, the free energyF ≡ F [v] is itself a sample-
dependent random quantity, whose distribution function we denote asP(F). Then (2.7)
can be rewritten as

Z(n) =
∫

dF P(F)exp

[
− n

T
F

]
(2.8)

which is the (generalized) Laplace transform of the free energy distribution functionP(F).
The free energy corresponding to the replica partition function (2.4) can be naturally

defined as

F(n) = −T lnZ(n). (2.9)

Although this quantity can be calculated only for integern, according to the standard
ideology of the replica approach it has to be considered as a function of thecontinuous
parametern which implies a necessity of analytic continuation inn.

Let us represent the free energyF(n) of the replicated system as a power series of the
replica parametern

F(n) =
∞∑
p=1

Fp

p!
np. (2.10)

Then, taking thepth derivative overn at n = 0 from both sides of (2.9) for thepth order
of the free energy fluctuations one finds

Fp = T 1−pFp (2.11)

where a double overbar denotes the irreducible average over disorder.

2.3. The Bethe ansatz type solution

In the framework of the replica approach the statistical mechanics of theirregular system is
analysed by considering the statistical mechanics of theregular system in which the disorder
manifests itself in the form of the interaction betweenn identical replicas of the original
system. For the system described by the Hamiltonian (1.1) and the Gaussian statistics of
the random potential (1.2), the averaging ofZn[v] over disorder leads to the expression for
Z(n), the form of which corresponds to the following replica Hamiltonian

Hrepl =
∫ L

0
dt

{
J

2T

n∑
a=1

(
dxa
dt

)2

− 1

T 2

n∑
a,b=1

V [xa(t)− xb(t)]
}
. (2.12)

Equation (2.12) has a form of the Euclidean (imaginary time) action describing the
quantum-mechanical system ofn particles with massJ/T and interaction−V (x)/T 2. The
same system can be described by the quantum-mechanical (operator) Hamiltonian

Ĥ = − T
2J

n∑
a=1

∇2
a −

1

T 2

n∑
a,b=1

V (xa − xb) (2.13)

which for the classical partition function defined by the Hamiltonion (2.12) plays the role
of the transfer matrix.

In the limit of infinite size(L → ∞), the free energy of a system (for any boundary
conditions) is dominated by the highest eigenvalue of transfer matrix or, in our case, by the
lowest eigenvalueE0 of the quantum-mechanical Hamiltonian (2.13)

F(n) = T E0(n)L. (2.14)
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For any integern the lowest eigenvalue corresponds to the fully symmetric (nodeless)
wavefunction which for the case of local correlations in thex direction

V (x) = uδ(x) (2.15)

has been found exactly by Kardar [3]

90[xa] = exp

(
−æ

n∑
a,b=1

|xa − xb|
)

(2.16)

where for our choice of notation

æ= Ju

T 3
. (2.17)

The energy of this state is equal to

E0(n) = −V (0)
T 2

n− Ju
2

6T 5
n(n2− 1) (2.18)

where the first term describes the trivial contribution toE(n) related to the terms witha = b
in the second sum in Hamiltonian (2.13).

Substitution of (2.18) into (2.14) gives

F(n) = F1n+ 1
6F3n

3 (2.19)

where

F1 =
[
−V (0)

T
+ Ju

2

6T 4

]
L (2.20)

and

F3 = −Ju
2

T 4
L. (2.21)

Comparison of (2.11) with (2.19) shows that forL→∞ the average free energy (per
unit length) of a random polymer

f ≡ lim
L→∞

F(L)

L
(2.22)

is given by the linear inn contribution toF(n)

f = 1

L
lim
n→0

F(n)

n
= F1

L
= −V (0)

T
+ Ju

2

6T 4
(2.23)

in which the first (formally divergent) term always dominates. Therefore, the average free
energy of the system could be defined only after proper short-scale regularization of the
original Hamiltonian.

However, the fluctuations of the free energy are quite well defined without any
regularization. According to (2.11) and (2.21) the typical value of the free energy
fluctuations can be estimated as

δF ∼
(∣∣∣F 3

∣∣∣)1/3
= (T 2|F3|)1/3 =

(
Ju2

T 2

)1/3

L1/3. (2.24)

Therefore, according to equation (2.2), for the average square deviation of the trajectory
one finds the following result:

〈x2〉 ∼
(
u

JT

)2/3

L4/3. (2.25)
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3. Introduction of the regularization

Apparently the divergence of the average free energy, equation (2.23), is removed if one
takes into account that in a physical system correlations of random potential can be described
by a smooth function with a finite correlation radius (and therefore a finite value ofV (0)).
However, in such a case the quantum-mechanical problem defined by equation (2.13) cannot
be solved exactly. Nonetheless it seems reasonable to assume that for narrow enoughV (x)

one can still use the expression (2.23) in whichu now stands for

u =
∫ +∞
−∞

dx V (x). (3.1)

It is easy to understand that such an approximate description (based on equations (2.16)–
(2.21)) at low temperatures has to fail. One has to remember that in the case of the
δ-functional interaction the wavefunction (2.16) is constructed as a generalization of a two-
particle problem wavefunction

9(x1, x2) = exp(−2æ|x1− x2|). (3.2)

On the other hand, in the case of a rectangular well

V (x) =
{
V for |x| < r

0 for |x| > r
(3.3)

(for which u = 2V r) the wavefunction of the two-particle problem for|x1 − x2| > r also
has the form (3.2) with

æ= 1

r
g

(
2T 3

0

T 3

)
(3.4)

where

g(z) ≈
{
z1/2 for z� 1

z for z� 1
(3.5)

and

T0 = (JV r2)1/3. (3.6)

It is not hard to check that the condition ær � 1 for this wavefunction to be wide in
comparison with the well width coincides with the conditionT � T0. In such a case
the value of æ given by equations (3.4)–(3.6) coincides with (2.17). In the opposite limit
T � T0 (ær � 1) the two-particle wavefunction is almost completely localized inside the
well and cannot be used as a building block for the construction of the solution of the
n-particle problem.

This gives a clear indication that for thearbitrary finite-width form of the function
V (x), describing the correlations of random potential, the application of Kardar’s solution
for the description of random polymer can only work at high enough temperatures whereas
in the low-temperature limit the solution is different.

Quite paradoxically differentiation of (2.23) shows that forT � T0 the free energy
defined by (2.23) corresponds to negative entropy. One should not be too scared of that
property since in the approach discussed above the free energy of a directed polymer is
calibrated in such a way that in the absence of the disorder it is equal to zero. Therefore,
the total free energy will be given by (2.23)plus the free energy in the absence of disorder.
This second term will give the positive contribution to the entropy which should overcome
the negative contribution from (2.23).
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4. The low-temperature solution of the regularized problem

Let us now consider then-particle problem defined by the Hamiltonian (2.13) where

V (x) = V
[

1− bx
2

r2

]
(4.1)

for |x| < r and equal to zero elsewhere. Here, in comparison with (3.3) we have introduced
a finite curvature of the potential inside the well, which is described by an additional free
parameterb (0 < b 6 1). At some stage of the calculation,b will be assumed to be much
smaller than one. ForV (x) of the form (4.1)

u = 2

(
1− b

3

)
V r ∼ 2V r (4.2)

and, therefore, the characteristic temperatureT0 defining the range of applicability of
Kardar’s approach (T � T0) can still be chosen in the form (3.6).

The characteristic frequency for small oscillations at the bottom of such truncated
parabolic well is given by

� =
√

2bV

JT r2
(4.3)

which increases with a decrease ofT much slower than the depth of the wellW = V/T 2.
Thus, the limit of low temperatures may correspond to the case when all particles are
localized near the bottom of the well. In such a limit the ground-state energyE(n) for the
n-particle system can be rather accurately found by assuming that equation (4.1) holds for
all xa − xb.

In such an approximation the ground-state wavefunction has a form

9[xa] = exp

[
− 1

A
√

2n

n∑
a,b=1

(xa − xb)2
]

A = �

W

r2

b
(4.4)

whereas the energy of the ground state is given by

E(n) = −Wn2+�
√
n

2
(n− 1) (4.5)

(cf [9, 10]). In the following it will be convenient to keep in mind that the ratio of� and
W can be expressed as

�

W
=
(

2b
T 3

T 3
0

)1/2

. (4.6)

It is not hard to find by a straightforward calculation that for9(x) of the form (4.4)

〈(xa − xb)2〉 = A√
2n
= 1√

2n

�

W

r2

b
(4.7)

so that for�/W � b (i.e. T � b1/3T0) 9(x) is indeed nicely localized at the bottom of
the well for any integern and, therefore, all corrections toE(n) due to non-parabolicity
can only be exponentially small.

On the other hand, one can easily see why the limitn → 0 is dangerous. The width
(4.7) of the wavefunction (4.4) grows with a decrease inn and becomes comparable with
the width of the well 2r at n ∼ b−1(T /T0)

3 and therefore for smallern the ground-state
wavefunction should have an essentially different form. The simplest way to let the particles
enjoy their mutual attraction while keeping their number in the well not too small consists
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of splitting them inton/k infinitely separated blocks ofk particles. The energyE(n, k) of
such a state with broken replica symmetry is given by

E(n, k) = n

k
E(k) = n

[
−Wk −�1− k√

2k

]
(4.8)

and has extremum (maximum) as a function ofk.
Variation of the polymer free energy per unit length

f (k) = T
[
−Wk −�1− k√

2k

]
(4.9)

with respect tok gives an equation for the position of the maximum

−W +� 1+ k
(2k)3/2

= 0 (4.10)

the solution of which for�/W � 1 has the form

k∗ ≈ 1

2

(
�

W

)2/3

= 1

2
(2b)1/3

T

T0
. (4.11)

Substitution of equation (4.11) into (4.7) then shows that for

T � b2/3T0 (4.12)

the replicas belonging to the same block are indeed tightly bound to each other:

〈(xa − xb)2〉 ≈
(
�

W

)2/3
r2

b
≈ T

b2/3T0
r2� r2 (4.13)

so the whole picture is really self-consistent.
Substitution of equation (4.11) into (4.9) gives the temperature-independent expression

f ≈ −3

2
(2b)1/3

V

T0
(4.14)

which shows that in order to find the temperature dependence off in low-temperature limit
we have to solve (4.10) more accurately. This gives

k∗ ≈ 1

2

(
�

W

)2/3

+ 1

4

(
�

W

)4/3

(4.15)

and

f ≈ −3

2
(2b)1/3

V

T0
+ 1

4
(2b)2/3

V

T 2
0

T . (4.16)

The idea to consider the state in whichn replicas are split inton/k infinitely separated
blocks of k particles was introduced by Parisi [12], who, however, applied it only to the
case of local interaction (2.15) (δ-functional correlations in terms of the original problem)
and discovered that the free energy as a function ofk has extremum atk = 0. This is
equivalent to considering all replicas belonging to the same block from the beginning. Our
analysis shows that smearing of the interaction potential leads (at low enough temperatures)
to a shift of the extremum to non-trivial values ofk (0< k < 1) corresponding to splitting
of the replicas into blocks (i.e. to replica symmetry breaking).

Although we have found that in the extremal solution the particles split inton/k separate
blocks there is no reason for these blocks to be infinitely separated from each other. The
presence of a strong attraction between the particles in each block makes it possible to
consider each block as a complex particle with masskJ/T , the interaction between these
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complex particles being given by−k2V (x)/T 2. The last expression can be expected to
be very accurate when we consider the temperature interval (4.12) in which the distances
between the particles inside each block are much smaller than the well radiusr.

Therefore, at low temperatures the behaviour of our system in which the particles are
assumed to be tightly bound inn/k separate blocks can be described by the Hamiltonian
(2.13) in which

J → kJ V (x)→ k2V (x) u→ k2u. (4.17)

Our earlier experience tells us that for some values of parameters such a system can be rather
accurately described by the wavefunction of the form (2.16) in whichxa now stands for the
coordinates of different blocks. The energy of such a state will be given by equation (2.18)
in which substitutions (4.17) andn → n/k have to be made with the first term being
substituted by (4.8)

E(n, k) = n
{
−Wk −�1− k√

2k
− 2B

W 3

�2
k4

[(
n

k

)2

− 1

]}
(4.18)

where

B = 2b

3

(
1− b

3

)2

(4.19)

is a small parameter ifb is small.
All this leads to the appearance in the expression forf (k) of one more term (in

comparison with equation (4.9))

f (k) = T
[
−Wk −�1− k√

2k
+ 2B

W 3

�2
k4

]
(4.20)

which describes the contribution related to the mutual interaction between the blocks.
Substitution of (4.11) into the saddle-point equation

−W +� 1+ k
(2k)3/2

+ 8B
W 3

�2
k3 = 0 (4.21)

which is obtained by a variation of (4.20) shows that forB � 1 (that is forb � 1) the
maximum off (k) still exists and in the lowest order inb the position of this maximum is
still given by (4.11).

The applicability of such an approach requires that the distances between the blocks
should be much larger than the size of the well (in exactly the same way as when a Kardar-
type solution is constructed from the separate particles and not from the blocks), i.e.

ær � 1. (4.22)

Substitution of equations (2.17), (4.17) and (4.11) into (4.22) then reduces it to the condition

b

2

(
1− b

3

)
� 1 (4.23)

which apparently is equivalent to the same conditionb � 1.
Strictly speaking the expression forf (k) given by (4.20) also has another extremum

(minimum) at

k = k∗∗ ≈ 1

B1/3
k∗ (4.24)
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but analogous analysis shows that

æ(k∗∗)r ≈ 3

4

(
1− b

3

)−1

∼ 1 (4.25)

and therefore this second extremum takes place in the domain of the parameters where
expression (4.20) based on the assumption (4.22) can no longer be trusted.

The form of equation (4.18) shows that in the considered case the only nonlinear (inn)
contribution toE(n) is also of third-order inn and corresponds to

F3 = −4V T 3
0

T 4
k2L (4.26)

where we assumeb � 1. Using the saddle-point value of the parameterk one gets

F3(k∗) = −(2b)2/3V T0

T 2
L. (4.27)

Correspondingly, for the typical value of the free energy fluctuations one obtains the
following temperature-independent result

δF ∼ (T 2|F3|)1/3L1/3 = C0L
1/3 (4.28)

where

C0 = (2b)2/9(V T0)
1/3. (4.29)

Finally, for the mean square deviation of the polymer trajectory one again finds〈x2〉 ∼ aL4/3

with the temperature-independent prefactor

a = C0

J
=
(

2b
V 2r

J 4

)2/9

. (4.30)

5. Conclusion

Thus we have demonstrated that in the case when random potential correlations are
characterized by the finite correlation radiusr the solution at low temperatures has an
essentially different structure to that at high temperatures. Nonetheless, the value of the
wandering exponent in both cases is the same;ζ = 2/3. In contrast to the high-temperature
limit for which the prefactora in the scaling law (1.3) is temperature-dependent,a ∝ T −2/3,
in the low-temperature limit it saturates at finite valuea ∝ r2/9.

Note, however, that forb � 1 the value ofa achieved atT � b2/3T0 (see (4.30))
turns out to be much smaller than its value atT ∼ T0 which can be estimated by
substituting equation (3.6) into (2.25). Therefore, in the intermediate temperature region
b2/3T0� T � T0 the prefactora has todecreasewith a decrease in temperature. Comparing
the two estimates it is not hard to conclude that if the temperature dependence ofa in this
region is algebraic then it has to be of the forma ∝ T 1/3.

Since the value of the wandering exponentζ is the same both in the high-temperature
and in the low-temperature limits there are no reasons for the sharp transition between
different regimes. At very low temperatures the solution is characterized by the one-step
replica symmetry breaking, that is the replicas are split into well separated blocks. With
growth of temperature the distance between the blocks becomes comparable with the size of
each block. At high temperatures the replica symmetry breaking phenomena can manifest
itself only in the slight modulation of the distance between nearest replicas in comparison
with what follows from the ‘replica symmetric’ wavefunction (2.16).
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The results of this work testify that the appearance of replica symmetry breaking in the
framework of a self-consistent approach [5, 6] is not an artefact but an essential feature of
the solution. However, since our solution is characterized by one-step replica symmetry
breaking with essentially non-Gaussian correlations between the positions of the blocks,
the inability of the self-consistent approach to reproduce the same value of wandering
exponentζ can probably be related to the restrictions imposed by the Gaussian form of a
trial Hamiltonian. On the other hand, a too direct comparison of our results with that of
[7] is probably inappropriate since in our terms the Gaussian form ofV (x) corresponds to
b ∼ 1 and does not allow for the construction of the low-temperature solution consisting of
really well separated blocks.

To avoid confusion it will be worthwhile to emphasize that the solution suggested in this
work does not allow for further generalization to the so-called hierarchical replica symmetry
breaking [13]. For each pair of replicas we have to assume that the average distance between
them is either much smaller thanr (in the same block) or much larger thanr (in different
blocks) which in our opinion leaves no other possibilities than one-step replica symmetry
breaking.
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